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Correlations in DNA sequences: The role of protein coding segments
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Protein coding segments~exons! exhibit persistent correlations between their nucleotides with a pronounced
period three. It is shown in this paper that this periodicity induced by the nonuniform codon usage implies
long-range correlation over hundreds of base pairs if the length distribution of exons is taken into account. We
derive expressions which relate the length distribution of exons to the correlation decay and find agreement
with numerical simulations. Finally, we analyze the decay of the mutual information function in yeast chro-
mosomes, in anE. coli chromosome region, and in myosin heavy chain genes as representative examples. It
turns out that in these cases we can explain most of the long-range statistical dependences even quantitatively.
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PACS number~s!: 87.10.1e, 05.40.1j, 02.50.Ey
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I. INTRODUCTION

The statistical analysis of DNA sequences is of imp
tance for understanding the structure and function of
nomes @1–8#. Statistical dependences between nucleoti
have been analyzed for decades in various contexts@9–15#.
Among physicists the detection of long-range correlatio
has attracted much attention during the past years@16–23#.
Using mutual information functions@16,20,23#, autocorrela-
tion functions @19,22#, spectra@18,24#, and random walk
analyses@17,25,26#, correlations ranging from a few bas
pairs ~bp! up to 104 bp have been analyzed. However, t
biological interpretation of most of these findings rema
still speculative.

From a molecular biological point of view, long-rang
correlations are not surprising since the complex organ
tion of genomes involves many different scales. In fact, la
variations in base composition on scales of thousands of
pairs have been discussed extensively in the literature~see,
e.g.,@27–33#!. For example, Elton@27# reviews experimenta
data showing that DNA fragments up to 104 bp have rather
large variances of the guanine~G!1cytosine~C! content. He
points out that these variations cannot be explained by sh
correlated fluctuations. In this way, long-range correlatio
were already indicated decades ago. Explicit examples
pronounced fluctuations of the G1C content together with
the gene distribution with an approximate period of 105 bp
were provided by the recent sequencing of yeast chro
somes@34,35#.

It has been pointed out by several authors that the mo
structure of genomes is presumably responsible for lo
range correlations@20,28,33#. Indeed, the organization of th
genome is very complex: eukaryotic genes usually consis
several protein coding segments~exons! interrupted by inter-
vening sequences~introns!. Moreover, there are regulator
elements such as promoters, splice sites, enhancers, an
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lencers, which are sometimes up to thousands of base p
away from exons. Genomes of higher eukaryotes also c
prise long stretches of DNA without any obvious biologic
function containing, e.g.,pseudogenesand various types of
repeats@8,23,36#.

There are several models of DNA where a segmentatio
structure is postulated@27,32,37–39#. Elton discusses, for
example, the variance of the G1C content for a model with
constant and exponentially distributed fragments@27#, and
Buldyrevet al.study a Lévy-walk model@38#. However, hy-
pothetical length distributions of fragments have to be p
tulated in these papers.

Contrarily, we will show in this paper that already th
well-known length distribution of exons generates lon
ranging correlations. As a first step we demonstrate in S
III that a nonuniformcodon usagein protein coding seg-
ments induces persistent period-three oscillations. In
section we introduce a model by which we generate artific
DNA sequences calledpseudoexons—a concatenation of sta
tistically independent codons chosen randomly from a giv
codon usage probability table. In Secs. IV and V, we emp
size the central role of the length distribution of exons. W
derive analytic expressions which relate the exon length
tribution to the correlation decay and show that these a
lytic results are in perfect agreement with numerical simu
tions. In Sec. VI, we apply these theoretical consideration
several DNA sequences~yeast chromosomes,E. coli DNA,
and a myosin heavy chain gene!.

We show that correlations on scales of hundreds of b
pairs can be simulated even quantitatively by taking in
account solely the nonuniformity of the codon usage and
length distribution of exons. In this way we relate we
known biological facts to observed long-range correlatio
between nucleotides.

II. CORRELATION MEASURES

DNA sequences can be viewed as symbolic strings co
posed of the four ‘‘letters’’ (A1 ,A2 ,A3 ,A4)[(A,C,G,T) re-
800 © 1997 The American Physical Society
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55 801CORRELATIONS IN DNA SEQUENCES: THE ROLE OF . . .
ferring to the nucleotides adenine, cytosine, guanine,
thymine. The probability of finding the nucleotideAi is de-
noted bypi ( i51,2,3,4). Pair correlations within sequenc
can be measured by the joint probabilitiespi j (k) of finding
the symbolAi and k letters downstream the symbolAj .
Then, statistical independence of symbols in a distancek is
defined bypi j (k)5pipj , which leads to the mutual informa
tion functionI (k) @6,12,22,40–42# as a measure of statistica
dependence

I ~k!5 (
i , j51

4

pi j ~k!log2
pi j ~k!

pipj
. ~1!

By choosing the logarithm to base 2,I (k) is measured in bit
and gives the information on the letterAj knowing the letter
Ai . The mutual informationI (k) vanishes if, and only if,
statistical independence holds, i.e., if all 16 joint probab
ties pi j (k) factorize. Consequently, the mutual informatio
allows us to detect any pair correlation.

More specific indicators of dependences are correla
functions. Their definition requires an assignment of nu
bersai to the corresponding symbolsAi . Assuming ergo-
dicity and stationarity, the usual estimation of autocorre
tion functions via averages over the sequence

C~k!5^a~n!a~n1k!&2^a~n!&^a~n1k!& ~2!

can be written in terms of the probabilities defined above

C~k!5S (
i , j51

4

pi j ~k!aiaj D 2S (
i51

4

piai D S (
j51

4

pjaj D
5 (

i , j51

4

@pi j ~k!2pipj #aiaj . ~3!

By definition, correlation functions measure only linear d
pendences. However, for quaternary sequences suc
DNA, six properly chosen autocorrelation functions a
three cross-correlation functions can guarantee the statis
independence between all nucleotide pairs@22#.

Long-range correlations are often characterized by po
laws

C~k!}k2g. ~4!

Such a scaling behavior can also be analyzed by using po
spectra or the random walk approach with related sca
exponents@26#. A power law ~4! implies also a power-law
decay of the mutual information function

I ~k!}k22g. ~5!

This can be easily derived using a Taylor expansion in te
of

Di j ~k!5pi j ~k!2pipj , ~6!

which measure deviations from statistical independen
SinceI (k) has a minimum atDi j[0, the sum over all linear
terms vanishes, and we obtain
d
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I ~k!5
1

2 ln2 (
i , j51

4 Di j
2 ~k!

pipj
1O~Di j

3 !. ~7!

In the Appendix we use this relation to discuss finite sam
effects. Equation~7! illustrates that the mutual informatio
I (k) accumulates all pair correlations in a distancek. For
DNA sequences, the above second-order approximatio
extremely close to the actual mutual information because
the weakness of correlations~see, e.g., Fig. 1!. Since corre-
lation functions can be written as quadratic forms of thede-
pendence matrix Di j @cf. Eqs. ~3! and ~6!#, a scaling expo-
nentg of correlation functions leads to an exponent 2g for
the mutual information.

In this paper we study mainly the decay of the mutu
information function as an overall measure of statistical
pendences. In contrast to entropies of long ‘‘words’’@20,36#
the statistical and systematic errors of the mutual informat
are relatively small since only 16 probabilities have to
estimated from samples of thousands of nucleotides. For
ample, the bias of the mutual information for a sample
sizeN has been calculated@12,22# to be

DI5
9

2 ln2N
, ~8!

which is marked in some figures by a dashed line. Thou
this bias is small, it becomes relevant for very weak corre
tions. Therefore, we discuss finite sample effects in so
detail in the Appendix.

III. EFFECTS OF A NONUNIFORM CODON USAGE

Analyses of DNA sequences revealed that their corre
tion functions often exhibit strong period-three componen
which are induced by the genetic code@9–11,24,43#. Figures
1–3 exemplify these periodicities for yeast chromosome
an E. coli chromosome region, and a myosin heavy ch
gene.

In protein coding segments, 61 of the possible 64 cod
~three-symbol words! encode 20 different amino acid
whereas the remaining 3 are used as stop codons. It has

FIG. 1. Mutual information function of the yeast chromosom
XI ~666 448 BP!. The periodicity due to the triplet code is visibl
even for distances above 1000 bp. The dashed line marks the
according to Eq.~8!.
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802 55HANSPETER HERZEL AND IVO GROßE
discussed@28,44–46# that these codons are used with qu
different frequencies for several reasons.~i! There are spe-
cific amino acid compositions for proteins.~ii ! The number
of triplets encoding an amino acid is different.~iii ! For any
amino acid, a preference of certain codons over others ex
~iv! The G1C content of the third codon position is corr
lated to the G1C content of the surrounding DNA regio
@35#.

In general, a nonuniform codon usage causes the con
tration of each nucleotide to be different in all three positio
of the reading frame. As we will show in the following, it i
exactly thisposition asymmetryof all four nucleotides that
introduces the pronounced period-three pattern of correla
functions as well as the mutual information function.

In order to quantify the effect of a nonuniform codo
usage on correlation measures, we introduce a stoch
model that randomly concatenates subsequent codons. I
following, we term the model sequences of independ
codons chosen from a given codon usage tablepseudoexon.
As we will see, these pseudoexons, which consist of stat
cally independent codons, display periodic long-range co
lations between their nucleotides. Our next task is to ana

FIG. 2. Period-three oscillations of the mutual information fo
chromosome region ofEscherichia coli~strain K-12, 111 401 bp!.

FIG. 3. Mutual information function of the HUMBMYH7 gene
~20 855 bp from the first to the last exon!. The mean exon length is
about 150 bp which is the characteristic length of the decay of
pronounced period-three oscillations.
ts.
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cally calculate the strength of these correlations, which w
shown to be a prominent long-range correlation pattern
real DNA ~cf. Figs. 1–3!.

Let us start with the calculation of the mutual informatio
of an infinitely long pseudoexon generated by such
Bernoulli-like process on the level of codons. We denote
frequency of thei th nucleotide at themth position bypi

(m)

(m51,2,3). The overall probability of symboli follows di-
rectly by averaging over the three positions

pi5
pi

~1!1pi
~2!1pi

~3!

3
~ i51, . . . ,4!. ~9!

The following table displays the 12 frequenciespi
(m) ,

which are obtained from the 5805 bp of the protein cod
segments from the intensively studied@15,47# human
b-myosin heavy chain~HUMBMYH7 ! gene.

Position 1 Position 2 Position 3

A 0.296 0.437 0.079
C 0.248 0.184 0.343
G 0.351 0.123 0.471
T 0.105 0.256 0.107

The joint probabilitiespi j (k) can be obtained directly
from tables as shown above. Fork>3, the corresponding
probabilities factorize due to our assumption of indepe
dence. First we considerk53,6,9,. . . ; i.e., the two symbols
of the pair are in the same position within the frame

pi j ~k!5
pi

~1!pj
~1!1pi

~2!pj
~2!1pi

~3!pj
~3!

3
. ~10!

For k54,7,10,. . . , weobtain

pi j ~k!5
pi

~1!pj
~2!1pi

~2!pj
~3!1pi

~3!pj
~1!

3
, ~11!

and distancesk55,8,11,. . . , lead to

pi j ~k!5
pi

~1!pj
~3!1pi

~2!pj
~1!1pi

~3!pj
~2!

3
. ~12!

Inspection of the last two expressions reveals t
pi j (k54,7, . . . ,)5pji (k55,8, . . . ,). Consequently, the val
ues of the mutual information at these positions are identi
The above expressions allow us to calculate thein-frame
mutual information

I in[I ~k53,6,9, . . . ,! ~13!

and theout-of-frame mutual information

I out[I ~k54,5,7,8,10,11, . . . ,!. ~14!

For example, the table given above yields

I in50.0247,

I out50.0083.
e
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55 803CORRELATIONS IN DNA SEQUENCES: THE ROLE OF . . .
The corresponding high-low-low pattern is indeed ob
ous in the examples graphed in Figs. 1–4. Figure 4 disp
the period-three oscillations of a pseudoexon that is ind
quite similar to the mutual information of the correspondi
exons.

In summary, for a single protein coding segment, a giv
codon usage table allows us to analytically calculate the
sulting period-three oscillations. However, genomes con
many exons, introns, and intergenic sequences. Moreo
protein coding segments are found in all three reading fra
and on both DNA strands. Therefore, we are not surprised
the fact that the mutual information function plotted in Fig
1–3 are decaying and thus deviate from a purely repe
high-low-low pattern.

Section IV is devoted to the role of the length distributi
of exons, which indeed strongly affects the decay proper
of correlation measures. Taking into account these len
distributions, we can generalize the pseudoexon mode
stochastic models of genes and even of whole chromoso
termedpseudochromosomes.

IV. LENGTH DISTRIBUTION OF EXONS

We have discussed in the preceding section that the j
probabilitiespi j

(k) calculated within an exon reflect the no
uniform codon usage. Since long stretches of DNA inclu
many different exons, only a fraction of pairsAi andAj are
located on the same exon. More precisely, an exon of len
l containsl2k pairs contributing to the codon usage induc
periodicity. Consequently, the length distributionr( l ) of ex-
ons in a given DNA will be considered in this section.

We definer( l ) as the probability distribution that an exo
has a lengthl . In Sec. V we discuss, for instance, a fixe
length l5L, exponential, and power-law distributionsr( l ).
Figure 5 shows a histogram of the lengths of exons for ye
chromosomes. It can be seen that there are rather long
tein coding segments. Regression reveals that the empi
distribution can be approximated by an exponential de
~full line! and by a power law~dashed line! as well. Hence,
we discuss both cases in some detail.

FIG. 4. Dashed line: Mutual information of a concatenation
all 40 exons~5 805 BP! of the HUMBMYH7 gene~compare Fig.
3!. Full line: Corresponding pseudoexon~5 805 bp! generated from
the codon usage table of the HUMBMYH7 gene.
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For the sake of simplicity, we assume below that all exo
are characterized by a single codon usage table. This is
course, a strong assumption since it is known that the co
usage depends, e.g., on the degree of gene expre
@44,46#. However, Sharp and Li claim that ‘‘within specie
the differences are largely in the degree rather than the
rection of codon usage bias’’@46#. If whole chromosomes
are analyzed, one has to take into account that genes
located on both strands. Therefore we use in our simulati
of pseudochromosomes~see Sec. VI! also complementary
codon usage tables.

As discussed in the preceding section the nonunifo
codon usage leads to specific statistical dependences w
exons. These are quantified below by the dependence m

Di j
exon~k!5pi j

exon~k!2pi
exonpj

exon. ~15!

In the following we denote the total fraction of prote
coding sequences in a given DNA sequence byF. For the
yeast chromosomes we have, for example,F'0.7 @34#. The
task is now to estimate the correlation decay for a giv
sequence lengthN, fraction of coding segmentsF, and prob-
ability distributionr( l ).

The mean exon length is given by

l̄5(
l
lr~ l !. ~16!

For yeast DNA, where genes exhibit only a few introns, t
mean exon length is about 1400 bp. The typical length sc
of human exons is a few hundred base pairs. However, th
are also exons with a length of several thousand base p
~e.g., exon 11 of the BCRA1 gene comprises 3426 bp!.

The expectation valuen̄ of the number of exons in a
sequence of lengthN and an exon fractionF is

n̄5
FN

l̄
. ~17!

Consequently, the average number of exons with a lengthl is
given by

f FIG. 5. Histogram of open reading frames~ORF’s! longer than
500 bp from the yeast chromosomes III, IX, and XI. Regression
an exponential function and a power-law decay are indicated by
and dashed lines, respectively.
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804 55HANSPETER HERZEL AND IVO GROßE
n~ l !5r~ l !n̄5
FNr~ l !

S l lr~ l !
. ~18!

Since we focus in this paper on correlations due to
nonuniform codon usage, we neglect statistical depende
of pairsAi andAj which are not within the same exon. Th
implies, for example, that the base composition in exons
introns is considered to be the same. Generalizations of
simplified approach are discussed in the final section.

Since every exon contributesl2k pairs, we obtain the
numberZ(k) of pairs which are located in the same exon

Z~k!5 (
l5k11

lmax

~ l2k!n~ l !. ~19!

Here, overlaps of protein coding segments have been
glected. The total number of pairs in a distancek is N2k,
and hence, the overall deviationsDi j (k) from statistical in-
dependence are given by

Di j ~k!5
Z~k!

N2k
Di j
exon~k!. ~20!

This result can now explain the decay of correlation fun
tions and the mutual information function, since both me
sures can be obtained from the decay of theDi j (k) @cf. Eqs.
~3!–~7!#. It can be seen that beside the internal period-th
oscillations described byDi j

exon(k) we obtain ak-dependent
prefactor related viaZ(k) to the exon length distribution
Since we are primarily interested in the long-ranging cor
lations, we focus in the following on the envelope:

E~k!}(
l

l2k

N2k
n~ l !. ~21!

This formula is a central result of this paper. It elucidates
immediate effect of the length distribution of exons on t
decay properties of correlation measures, which we will
emplify in Sec. V.

V. MODELS OF LENGTH DISTRIBUTIONS

Now we illustrate the considerations of the preceding s
tion for three representative probability distributionsr( l ),
namely, a uniform, an exponential, and a power-law dis
bution.

We analytically derive the corresponding decay laws a
test the predictions usingpseudogenes. ~We use this terminus
in analogy topseudoexonsandpseudochromosomesfor cor-
responding stochastic model sequences. It should not be
fused with knocked out genes which are termed pse
genes as well.! These consist of interspersed pseudoex
within a random sea, i.e., statistically independent lette
with the same base composition as the pseudoexons.
length of each exon is chosen randomly from the distribut
r( l ) under consideration. In all simulations in this section
have chosen the codon usage table of the HUMBMYH7 g
studied in Sec. III. Details of the simulations are described
the figure captions.

As a first model we discuss a fixed length of all prote
coding segmentsl5L,
e
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r~ l !5d lL . ~22!

This yields

n̄5n~L !5
FN

L
. ~23!

Fork,L we obtain essentially a linear decay of the envelo
E(k)

E~k!}
FN

N2k

L2k

L
'F

L2k

L
. ~24!

The k dependence of the denominator can be neglected
N@L. The resulting linear decay ofDi j (k) implies a qua-
dratic decay of the mutual information function@cf. Eq. ~7!#.
Such a parabola is seen in Fig. 6 for a pseudogene w
constant exon length.

Of course, it is more realistic to assume an exponentia
decaying length distribution~compare Fig. 5!. As above in
Eq. ~24!, we neglect thek dependence of the denominato
For the sake of simplicity, we further replace the summat
in Eq. ~21! by an integration fromk to infinity. Then an
exponential length distribution

r~ l !5l exp~2l l ! ~25!

gives an exponential decay of the envelope

E~k!}FlE
k

`

~ l2k!r~ l !dl5F exp~2lk!. ~26!

Figure 7 displays the results for a corresponding simulat
of a pseudogene.

As a last example we consider a power-law decay from
lower cutoff lengthLmin with an exponentb.2

r~ l !5~b21!Lmin
b21l2b for l>Lmin ~27!

FIG. 6. Mutual information of a 106 bp long random sequence
Within a ‘‘random sea’’ of independent letters A, C, G, and T, 10
pseudoexons of a length 600 bp have been interspersed. For
k, we observe the expected period-three oscillations betw
F2I in andF

2I out @see Eqs.~7! and ~20!#. Please note that Eq.~24!
predicts exactly the parabolic decay betweenk50 andk5600.



he

e

. 8
re

ex
o
e
b

by
of

ive
that
s a
of

a-

r the

ated
ical
as
be-
ame
odel
ll-
lter-

o-
ro-
e

bles
and

o-
by

-

ed

uti

o-
es

ing
was

ch

55 805CORRELATIONS IN DNA SEQUENCES: THE ROLE OF . . .
and zero otherwise. The mean value of the length is t
given by

l̄5
b21

b22
Lmin . ~28!

After integration we obtain a power-law decay of the env
lope for k.Lmin

E~k!}
FLb22

b21
k22b. ~29!

The log-log presentation of the mutual information in Fig
indicates indeed a power law for a simulation of a cor
sponding pseudogene.

These examples show how the length distribution of
ons affects the decay of correlations, which are due the n
uniform codon usage. In Sec. VI we show that our consid
ations apply to DNA sequences and that a considera

FIG. 7. Mutual information of a 106 bp long sequence contain
ing 1000 pseudoexons with exponentially distributed lengths~mean
value 600 bp!. The logarithmic vertical scale reveals the predict
exponential decay.

FIG. 8. Mutual information of a 73106 bp long sequence with
7000 pseudoexons. The parameters of the exon length distrib
areLmin5150 andb5

9
4.
n

-

-

-
n-
r-
le

amount of observed correlations can be predicted just
knowing codon usage tables and the length distribution
exons.

VI. APPLICATIONS TO DNA SEQUENCES

In this section we apply our concept to representat
DNA sequences. It was already demonstrated in Fig. 1
the periodicity due to the nonuniform codon usage play
significant role in yeast DNA. This is due to large fraction
coding sequences (F'0.7) and rather long exons~compare
Fig. 5!. In order to quantify the effect of exons on correl
tions we generatepseudochromosomesas follows: codon us-
age tables are taken from long yeast genes as a basis fo
simulation of pseudoexons~see Sec. III!. In order to simulate
strand symmetry, 50% of the pseudoexons are gener
with the complementary codon usage table. The empir
histogram from the corresponding chromosome is taken
length distribution for the interspersed pseudoexons. In
tween the pseudoexons Bernoulli sequences with the s
base composition are inserted. In this way a stochastic m
of a chromosome is defined which incorporates only we
known features—the nonuniform codon usage and the a
nation of coding segments and intervening sequences.

Figure 9 reveals that the decay for the pseudochrom
somes is quite similar to the actual decay for the yeast ch
mosomes. Only for smallk additional correlations can b
seen which are discussed in Sec. VII.

Similar agreement was also found for codon usage ta
from other protein coding segments and for some str
asymmetry.

Significant long-range correlations in the yeast chrom
some III up to several kilo base pairs have been reported
Munson, Taylor, and Michaels@48#. The existence of such
on

FIG. 9. Decay of the mutual information function for yeast chr
mosomes~thin lines! and the corresponding pseudochromosom
~thick lines!. In order to reduce the strong fluctuations~compare
Fig. 1! and to focus on the decay we have applied a 99 bp runn
average. Upper graph: Chromosome III. The codon usage table
taken from the temperature-sensitive lethal TSM1 protein~4 221
bp!. Lower graph: Chromosome XI, table from the ORF whi
encodes dynein~12 276 bp!.
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806 55HANSPETER HERZEL AND IVO GROßE
correlations is indeed corroborated by our mutual inform
tion analysis. However, they exist also in a pseudochrom
some~see Fig. 9!, and hence, the length distribution of exo
is sufficient to explain these correlations.

In the same way as for the yeast chromosome, we ge
ated a stochastic model of a DNA region ofE. coli ~see Fig.
2!. Figure 10 shows a comparison of the mutual informat
functions.

Finally, we discuss the correlation decay in the myo
heavy chain gene M74000 ofBrugia malayi. We have cho-
sen this gene since the 15 exons constitute about 68% o
total gene. Consequently, the correlations due to the ex
and their length distribution are more pronounced then
genes with only a few percent of exons.~In fact, the decay
for the human myosin heavy chain depicted in Fig. 3 is a
strongly influenced by correlations within its introns.! The
codon usage table and empirical length distribution of
analyzed gene are taken to generate a pseudogene a
scribed in Sec. V. Since there are fairly long exons in t
gene, Fig. 11 displays the expected long tail of the envelo
Quite similar correlations are found in the correspond
pseudogene~thick line! pointing to the fact that most corre
lations are solely due to the length distribution of exons
turns out that for such relatively short DNA sequences
careful calculation of the bias~dashed line in Fig. 11! is
necessary for a correct interpretation of the decay.

VII. SUMMARY AND DISCUSSION

Our paper was devoted to relating a significant part
observed long-range correlations to the pattern of pro
coding segments. We have shown that the triplet code
duces via a nonuniform codon usage persistent oscillat
of correlation measures. By taking into account the len
distributions of exons, a long-ranging decay of the mut
information function and correlation functions could be p
dicted. For example, a power-law distribution of the ex
length implies a power-law decay of correlation measure

Pseudochromosomes based on the empirical length d
bution in yeast chromosomes exhibit a quite similar decay

FIG. 10. Mutual information decay for theE. coli chromosome
region ~thin line! and a corresponding pseudoregion with the sa
length distribution of~pseudo-! exons. The codon usage table w
taken from the isoleucil-tRNA ligase~2 811 bp!. As in Fig. 9 a 99
bp running average was applied.
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correlations and, therefore, most of the correlations in ye
DNA could be traced back to a simple origin. Our consid
ations apply to all parts of genomes where coding segm
constitute a significant portion of the DNA such as bacte
or retroviruses. This was exemplified for a DNA region ofE.
coli and for a myosin heavy chain gene with a large fract
of exons.

Typically, in higher eukaryotes only a few percent of th
DNA are protein coding regions. Consequently, observ
long-range correlation in DNA as the humanb-globin region
@17# or in genes with very long introns@16# cannot be ex-
plained simply by the nonuniform codon usage within exo
Moreover, the well-known compositional variations alon
chromosomes on scales above 105 bp @28,34,35# are beyond
the scope of our analysis.

Our concept is, however, more generally applicable
can be formulated as follows:~i! look for fragments of dif-
fering statistical properties,~ii ! analyze its length distribu-
tion, ~iii ! define appropriate~stochastic! pseudosequences
and ~iv! analyze their correlation decay, and~v! compare it
with the empirical mutual information. Related stochas
models of the DNA heterogeneity have a long traditi
@27,32,36,38#, but these models are based on hypotheti
length distributions of fragments. Contrarily, our approa
simply exploits the well-known length distribution of exon

As a first step of a more general approach, Schmitt, Eb
ing, and Herzel@49# recently studied length distributions o
over-represented ‘‘words’’ termedmodules. We suggest ana
lyzing also length distributions of—for example—isochor
@30#, gene clusters, dispersed repeats, simple-sequence D
or CpG islands. If one takes into account different compo
tions of exons and introns, the length distribution of intro
comes into play as well. We expect that stochastic mod
which include the actual length distributions of all these s
ments can relate most observed long-range correlation
known biological structures.

Though we have quantitatively explained the origin
long-range correlations in mostly protein coding sequenc

e
FIG. 11. Comparison of the smoothed mutual information~99

bp running average! of Brugia malayi myosin heavy chain gen
~8 600 bp from the first to the last exon! and a corresponding ran
dom sequence with the same exon length distribution and co
usage. Since the sample size decreases with the distance ther
clear increase of the bias~see also the Appendix!.
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many questions remain open. For example, correlati
within introns and intergenic sequences were not the sub
of this paper. Moreover, we have seen in Fig. 9 additio
correlations in yeast DNA for small distances, which can
be explained by our pseudoexon concept. Figure 12 disp
an example of such a peak structure with a periodicity
about 10 BP. These peaks may reflect thepitch of DNA, i.e.,
a 10.5 BP periodicity that has been found in curved DN
@50,51# and DNA folded into nucleosomes@52#. Addition-
ally, the well-known three-four amino acid periodicities
a-helical proteins@12,53–55# are a possible source of th
observed peak structure.

In summary, we have shown in this paper that the len
distribution of exons in real DNA induces long-range cor
lations which can be described by appropriate stocha
models. We stress, finally, that beyond these correlati
other DNA base pair fluctuations exist on various sca
@13,16–18,30,35#. Their role for the chromosome organiz
tion and gene expression has still to be explored.
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APPENDIX: ESTIMATION OF THE MUTUAL
INFORMATION FROM FINITE SAMPLES

In this Appendix, we derive analytic expressions for s
tistical and systematic errors that occur by estimating
mutual information functionI (k) from finite sequences. Th
estimator we use throughout our paper is the so called n
ral estimatorÎ (k) of the mutual information function, which
is defined as

FIG. 12. Mutual information of yeast chromosomes III~full
line!, IX ~dashed line!, XI ~dotted line! for short distances. In orde
to eliminate the dominating period-three oscillations, we appl
running average over 3 bp. The comparison with a pseudochro
some ~thick line! reveals additional correlations~in particular, a
10–11 bp period!.
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Î ~k!5 (
i , j51

4

p̂i j ~k!ln
p̂i j ~k!

p̂i p̂ j
, ~A1!

where p̂i j (k) and p̂i denote the relative frequencies rath
than the~unknown! probabilitiespi j (k) and pi defined in
Sec. II. Note that we have measured, so far, the mutual
formation in bits which corresponds to the logarithm of ba
2 in Eq. ~1!. In this Appendix we use the natural logarith
for convenience.

As the estimatesp̂i j (k) and p̂i vary from sequence to
sequence, the values ofÎ (k) also fluctuate. Our task will be
to find approximate closed form expressions for the me
and the variance of the distribution ofÎ (k) as well as to
derive its asymptotic form in the limit of large sequen
lengths.

1. The mutual information bias

Let us start with expressing the natural mutual inform
tion function estimatorÎ (k) in terms of the natural estimator
of the one-gram and two-gram Shannon entropies, which
denote byĤ1 and Ĥ2(k), respectively.

Î ~k!5 (
i , j51

4

p̂i j ~k!lnp̂i j ~k!22(
i51

4

p̂i lnp̂i ~A2!

52Ĥ12Ĥ2~k!. ~A3!

By expanding lnp̂ij(k) and lnp̂i aboutpi j (k) andpi , we ob-
tain a power series expansion of the expectation va
E„Î (k)… in terms of moments of the multinomial distribution
all of which can be derived by elementary methods. Us
the biases ofĤ1 andĤ2(k) derived in@12,56,57#, we obtain

E„Î ~k!…52E~Ĥ1!2E„Ĥ2~k!… ~A4!

52SH12
3

2ND2SH2~k!2
15

2ND1O~1/N2!

~A5!

5I ~k!1
9

2N
1O~1/N2!. ~A6!

This states, that~on average! we overestimate the mutua
information by an amount of 9/2N nits due to the finite
length of the studied sequence.

2. The mutual information variance

For the sake of simplicity, we omit the distancek as the
argument of the mutual information functionI (k), the Shan-
non entropyH2(k), the probabilitiespi j (k), and their esti-
mators. According to Eq.~A2! and denoting the covarianc
between two random variablesa and b by cov(a,b), we
obtain

s2~ Î !54s2~Ĥ1!1s2~Ĥ2!24cov~Ĥ1 ,Ĥ2! ~A7!

for the variance of the mutual information estimateÎ . The
first two terms in this equation are already given in@56,57#,
who derive that

a
o-
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s2~Ĥ1!5
1

N S (
i51

4

pi ln
2pi2H1

2D 1O~1/N2! ~A8!

as well as

s2~Ĥ2!5
1

N S (
i , j51

4

pi j ln
2pi j2H2

2D 1O~1/N2!. ~A9!

Therefore, we dedicate the following paragraph to deriv
the covariance between the Shannon entropy estimatesĤ1

andĤ2, which appear to be not at all independent but hig
correlated as observed in@22#.

Following the lines in@58#, we obtain

cov~Ĥ1 ,Ĥ2!5E„~Ĥ12H1!~Ĥ22H2!…

2E~Ĥ12H1!E~Ĥ22H2! ~A10!

}ES (
i , j51

4

~ lnpi j !~ p̂i j2pi j !

3 (
k51

4

~ lnpk!~ p̂k2pk!D . ~A11!

The symbol} indicates thatO(1/N2) terms are neglected
Further calculations yield

cov~Ĥ1 ,Ĥ2!5 (
i , j ,k,l51

4

lnpi j lnpkE„~ p̂i j2pi j !~ p̂kl2pkl!…

5 (
i , j51

4

lnpi j lnpi
pi j ~12pi j !

N
~A12!

2 (
i , j ,k,l51

4

~12d ik!~12d j l !

3 lnpi j lnpk
pi j pkl
N

~A13!

5
1

N (
i , j51

4

lnpi j lnpipi j

2
1

N (
i , j ,k,l51

4

lnpi j lnpkpi j pkl ~A14!

5
1

N
cov~ lnpi , lnpi j !, ~A15!

which relates the covariance of the natural Shannon entr
estimates to the covariance of the logarithms of the unde
ing probabilities: the covariance between the observed t
gram Shannon entropy and its marginal one-gram Shan
entropy observed from the same sample of sizeN is, in a
first-order approximation, equal to the covariance betw
the logarithms of the joint probabilitiespi j and the loga-
rithms of their marginal probabilitiespi divided byN.
g

y

py
y-
o-
on

n

Let us eventually derive an approximation for the cor
lation coefficientr betweenĤ1 andĤ2, which is defined as
the normalized covariance

r ~Ĥ1 ,Ĥ2![
cov~Ĥ1 ,Ĥ2!

As2~Ĥ1!s
2~Ĥ2!

~A16!

}
cov~ lnpi , lnpi j !

As2~ lnpi !s
2~ lnpi j !

~A17!

5r ~ lnpi , lnpi j !. ~A18!

This is a really noticeable result, since the right hand side
this equality does not depend on the sample sizeN. It states
that the correlation coefficient between the natural estima
of the statisticsĤ1 and Ĥ2 is independent of the sequenc
length and given by the correlation coefficient between
logarithm of the joint probabilitiespi j and the logarithm of
their marginal probabilitiespi . Since Ĥ1 and Ĥ2 of DNA
sequences are strongly correlated, we understand why
mutual information fluctuations are small compared to
fluctuations of bothĤ1 and Ĥ2 @22#.

By combining Eqs.~A7!–~A9! with Eq. ~A15!, we obtain

s2~ Î !}
4

N
s2~ lnpi !1

1

N
s2~ lnpi j !2

4

N
cov~ lnpi , lnpi j !

~A19!

5
1

N
s2~ lnpi j22lnpi ! ~A20!

5
1

N
s2F lnS pi j

pipj
D G . ~A21!

Note again that this equality relates thesample varianceof
the mutual information estimates to the variance of the
numbers ln@(pij /pipj)# as worked out in more detail in@58#.

3. The asymptotic mutual information distribution

In the following, we denote the statistical dependences
D̂ i j5 p̂i j2 p̂i p̂ j and expand the mutual informationÎ in a
Taylor series aboutD̂ i j :

Î5 (
i , j51

4

p̂i j ln
p̂i j

p̂i p̂ j
~A22!

5 (
i , j51

4

~D̂ i j1 p̂i p̂ j !lnS 11
D̂ i j

p̂i p̂ j
D

~A23!

5 (
i , j51

4

~D̂ i j1 p̂i p̂ j !S D̂ i j

p̂i p̂ j
2

D̂ i j
2

2p̂i
2p̂ j

2
1••• D

~A24!

5 (
i , j51

4 D̂ i j
2

2p̂i p̂ j
1O~D̂ i j

3 !. ~A25!
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The quantity

x2[N (
i , j51

4 D̂ i j
2

p̂i p̂ j
~A26!

is known asx2 statistics, which asymptotically approaches
x2-probability distribution with nine degrees of freedo
@40#. For Bernoulli sequences with vanishingDi j , the result-
ing asymptotic probability density of the natural mutual i
formation estimatesÎ reads
,

-
on

F.

tt.

ns

ys
P~ Î !5
N9/2Î 7/2

G~9/2!
e2NÎ. ~A27!

Otherwise, 2NÎ asymptotically approaches a noncent
x2-probability distribution for nonvanishingDi j @40,59#.

These reviewed expressions for the bias, variance,
asymptotic distribution provide a firm statistical basis f
applications of the mutual information function in sequen
analysis.
-
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