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Correlations in DNA sequences: The role of protein coding segments
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Protein coding segmen(sxong exhibit persistent correlations between their nucleotides with a pronounced
period three. It is shown in this paper that this periodicity induced by the nonuniform codon usage implies
long-range correlation over hundreds of base pairs if the length distribution of exons is taken into account. We
derive expressions which relate the length distribution of exons to the correlation decay and find agreement
with numerical simulations. Finally, we analyze the decay of the mutual information function in yeast chro-
mosomes, in afE. coli chromosome region, and in myosin heavy chain genes as representative examples. It
turns out that in these cases we can explain most of the long-range statistical dependences even quantitatively.
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I. INTRODUCTION lencers, which are sometimes up to thousands of base pairs
away from exons. Genomes of higher eukaryotes also com-
The statistical analysis of DNA sequences is of impor-prise long stretches of DNA without any obvious biological
tance for understanding the structure and function of gefunction containing, e.gpseudogeneand various types of
nomes[1-8]. Statistical dependences between nucleotidesepeats(8,23,34.
have been analyzed for decades in various conf@45]. There are several models of DNA where a segmentational
Among physicists the detection of long-range correlationsstructure is postulatef27,32,37-3% Elton discusses, for
has attracted much attention during the past yghés-23. example, the variance of the4&C content for a model with
Using mutual information functiongl6,20,23, autocorrela- constant and exponentially distributed fragmef2], and
tion functions[19,22, spectra[18,24), and random walk Buldyrevet al.study a Ley-walk model[38]. However, hy-
analyses[17,25,26, correlations ranging from a few base Pothetical length distributions of fragments have to be pos-
pairs (bp) up to 10 bp have been analyzed. However, thetulated in these papers.
biological interpretation of most of these findings remains Contrarily, we will show in this paper that already the
still speculative. well-known length distribution of exons generates long-
From a molecular biological point of view, long-range ranging correlations. As a first step we demonstrate in Sec.
correlations are not surprising since the complex organizalll that a nonuniformcodon usagen protein coding seg-
tion of genomes involves many different scales. In fact, largénents induces persistent period-three oscillations. In that
variations in base composition on scales of thousands of bag&ction we introduce a model by which we generate artificial
pairs have been discussed extensively in the literatsee, DNA sequences callepseudoexors-a concatenation of sta-
e.g.,[27-33). For example, Eltofi27] reviews experimental tistically independent codons chosen randomly from a given
data showing that DNA fragments up to*16p have rather codon usage probability table. In Secs. IV and V, we empha-
|arge variances of the guanim@)-}_cytosine(C) content. He size the central role of the Iength distribution of exons. We
points out that these variations cannot be explained by shorflerive analytic expressions which relate the exon length dis-
correlated fluctuations. In this way, long-range correlationdribution to the correlation decay and show that these ana-
were already indicated decades ago. Explicit examples dytic results are in perfect agreement with numerical simula-
pronounced fluctuations of the-&C content together with tions. In Sec. VI, we apply these theoretical considerations to
the gene distribution with an approximate period of bp ~ Several DNA sequencegeast chromosomesg,. coli DNA,
were provided by the recent sequencing of yeast chromc@nd @ myosin heavy chain gene
someg 34,35 We show that correlations on scales of hundreds of base
It has been pointed out by several authors that the mosaR@irs can be simulated even quantitatively by taking into
structure of genomes is presumably responsible for longaccount solely the nonuniformity of the codon usage and the
range correlationf20,28,33. Indeed, the organization of the length distribution of exons. In this way we relate well-
genome is very complex: eukaryotic genes usually consist dfnown biological_ facts to observed long-range correlations
several protein coding segmeitexons interrupted by inter-  between nucleotides.
vening sequenceéntrons). Moreover, there are regulatory
elements such as promoters, splice sites, enhancers, and si- Il CORRELATION MEASURES

DNA sequences can be viewed as symbolic strings com-
*Electronic address: herzel@itp1.physik.tu-berlin.de posed of the four “letters” A;,A,,A;,A)=(A,C,G,T) re-
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ferring to the nucleotides adenine, cytosine, guanine, and
thymine. The probability of finding the nucleotide is de-
noted byp; (i=1,2,3,4). Pair correlations within sequences 10 |
can be measured by the joint probabilitigs(k) of finding
the symbolA; and k letters downstream the symbd; .
Then, statistical independence of symbols in a distdnte
defined byp;; (k) = p;p;, which leads to the mutual informa-
tion functionl (k) [6,12,22,40—4Ras a measure of statistical
dependence

mutual information [bit}

. pij(K)
_ N ij
(0= 2 pij(klogz= o= (1)

iPj i ittt bttt o o

0 .
. . . . . 1 1100 1
By choosing the logarithm to baselZk) is measured in bit o0 distance [bp] 20

and gives the information on the lettéy knowing the letter

A;. The mutual informatiori (k) vanishes if, and only if, FIG. 1. Mutual information function of the yeast chromosome
statistical independence holds, i.e., if all 16 joint probabili-XI (666 448 BR. The periodicity due to the triplet code is visible
ties pij(k) factorize. Consequently, the mutual information even for distances above 1000 bp. The dashed line marks the bias

allows us to detect any pair correlation. according to Eq(8).
More specific indicators of dependences are correlation

functions. Their definition requires an assignment of num- 1 2 Dizj(k) 3

bersa; to the corresponding symbols; . Assuming ergo- |(k)=mi =~ pipi +0O(Dj)). )

dicity and stationarity, the usual estimation of autocorrela- ! ak

tion functions via averages over the sequence In the Appendix we use this relation to discuss finite sample

effects. Equation(7) illustrates that the mutual information

C(k)=(a(n)a(n+k))—(a(n)){a(n+k)) (2 1(k) accumulates all pair correlations in a distariceFor

DNA sequences, the above second-order approximation is
can be written in terms of the probabilities defined above, extremely close to the actual mutual information because of
the weakness of correlatiorisee, e.g., Fig.)1 Since corre-
4 4 . . ) .
B E a E a lation functlons_can be written as quadratic forms of dee
< Pid = Pja; pendence matrix P [cf. Egs.(3) and (6)], a scaling expo-
nent y of correlation functions leads to an exponent for
4 the mutual information.
=i_§__:1 [pij(K) —pip;]aia; - 3 In this paper we study mainly the decay of the mutual
! information function as an overall measure of statistical de-
pendences. In contrast to entropies of long “word&0,36
gjﬁe statistical and systematic errors of the mutual information

DNA, six properly chosen autocorrelation functions andare relatively small since only 16 probabilities have to be

three cross-correlation functions can guarantee the statisticgrﬁg'Te""t?gefrgstignﬂgsn?l:ﬁ;u;?ggﬁa(irozugéerosdszsrhFloe ' g;('
independence between all nucleotide pa22|. pe. P

Long-range correlations are often characterized by powe?'zeN has been calculated 2,22 to be
laws 9

Al= 01, (8)
C(k)ockfy. (4) 2 In2N

ihj=1

4
C(k)=<,2 pij (K)a;a;

By definition, correlation functions measure only linear de-
pendences. However, for quaternary sequences such

. ) . which is marked in some figures by a dashed line. Though
Such a scaling behavior can also be analyzed by using powglis hias is small, it becomes relevant for very weak correla-

spectra or the random walk approach with related scalingions Therefore, we discuss finite sample effects in some
exponentd26]. A power law (4) implies also a power-law  yatail in the Appendix.

decay of the mutual information function
I(k)0<k727. 5) . EFFECTS OF A NONUNIFORM CODON USAGE
Analyses of DNA sequences revealed that their correla-
This can be easily derived using a Taylor expansion in termsion functions often exhibit strong period-three components,
of which are induced by the genetic cdde-11,24,43 Figures
1-3 exemplify these periodicities for yeast chromosome XI,
Djj (k)= pij (k) — pip; , (6) an E. coli chromosome region, and a myosin heavy chain
gene.
which measure deviations from statistical independence. In protein coding segments, 61 of the possible 64 codons
Sincel (k) has a minimum ab;; =0, the sum over all linear (three-symbol words encode 20 different amino acids
terms vanishes, and we obtain whereas the remaining 3 are used as stop codons. It has been
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0.0006 : : : : cally calculate the strength of these correlations, which was
shown to be a prominent long-range correlation pattern of
real DNA (cf. Figs. 1-3.

Let us start with the calculation of the mutual information
of an infinitely long pseudoexon generated by such a
Bernoulli-like process on the level of codons. We denote the
frequency of theith nucleotide at thenth position byp{™
(m=1,2,3). The overall probability of symbalfollows di-
rectly by averaging over the three positions

0.0004 -

mutual information [bit]

0.0002

ONIFNCRNC)
________________________________ pi:—p' pé P =1 4 (9)
0.0000 - ; . . . . .
500 520 540 260 580 600 The following table displays the 12 frequencipf™,

distance [bp)

which are obtained from the 5805 bp of the protein coding

FIG. 2. Period-three oscillations of the mutual information for a S€gments from the intensively studiefd 5,47 human
chromosome region dEscherichia coli(strain K-12, 111401 bp ~ B-myosin heavy chaitHUMBMYH7) gene.

discussed28,44—4§ that these codons are used with quite Position 1 Position 2 Position 3
different frequencies for several reasofi$.There are spe-

. . . = N A 0.296 0.437 0.079
cific amino acid compositions for proteingi) The number
of triplets encoding an amino acid is differekiii) For any C 0.248 0.184 0.343
amino acid, a preference of certain codons over others existS 0.351 0.123 0.471
(iv) The G+C content of the third codon position is corre- T 0.105 0.256 0.107
lated to the G-C content of the surrounding DNA region  The joint probabilitiesp;;(k) can be obtained directly
[35]. from tables as shown above. Fke3, the corresponding

In general, a nonuniform codon usage causes the conceprobabilities factorize due to our assumption of indepen-

tration of each nucleotide to be different in all three positionsdence. First we considér=23,6,9,. . . ;i.e., the two symbols

of the reading frame. As we will show in the following, it is of the pair are in the same position within the frame
exactly thisposition asymmetrpf all four nucleotides that
introduces the pronounced period-three pattern of correlation pVptY+p@pl2 4 p3p(3)
: : ' . i M i M i M
functions as well as the mutual information function. pij (k)= 3 : (10

In order to quantify the effect of a nonuniform codon

usage on correlation measures, we introduce a stochastic, .| _ 4 7 10 we obtain
model that randomly concatenates subsequent codons. In the T
following, we term the model sequences of independent (1p(2) 4 p(21p(3) 4 B (D)
codons chosen from a given codon usage takskudoexon (k)= —1 . . (12)
. . : L pij (k) 3 :
As we will see, these pseudoexons, which consist of statisti-
cally independent codons, display periodic long-range corre- , _
lations between their nucleotides. Our next task is to analytiand distance&=5,8,11,.. ., lead to
(1) (3) (2) (1) (3)n(2)
PiT R TRITRT T RITR
oot ‘ ’ pij (k)= 3 : (12
0.008 | ] Inspection of the last two expressions reveals that

pij(k=4,7,...,)=p;i(k=5,8,...,). Consequently, the val-
ues of the mutual information at these positions are identical.
The above expressions allow us to calculate ithdrame
mutual information

0.006 -

0.004

mutual information [bit)

I(k=3,6,9...) (13

Iin

00021 and theout-of-frame mutual information

lou=1(k=4,5,7,8,10,11. .. ). (14

0.000
0

distance [bp]

For example, the table given above yields

FIG. 3. Mutual information function of the HUMBMYH7 gene
(20 855 bp from the first to the last eXoiThe mean exon length is lin=0.0247,
about 150 bp which is the characteristic length of the decay of the
pronounced period-three oscillations. I out=0.0083.
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FIG. 4. Dashed line: Mutual information of a concatenation of ~ FIG. 5. Histogram of open reading fram@8RF’s) longer than
all 40 exons(5 805 BB of the HUMBMYH7 gene(compare Fig. 500 bp from the yeast chromosomes lll, IX, and XI. Regression by
3). Full line: Corresponding pseudoex@805 bp generated from  an exponential function and a power-law decay are indicated by full
the codon usage table of the HUMBMYH7 gene. and dashed lines, respectively.

The corresponding high-low-low pattern is indeed obvi- For the sake of simplicity, we assume below that all exons

ous in the examples graphed in Figs. 1—4. Figure 4 displaygre characterized by a si_ngle _codo_n_usage table. This is, of
the period-three oscillations of a pseudoexon that is indeefOUrSe: @ Strong assumption since it is known that the codon

quite similar to the mutual information of the correspondingusage depends, e.g., on the. degree of“g_en_e Expression
exons. [44,46. However, Sharp and Li claim that “within species

In summary, for a single protein coding segment, a giverjfhe differences are largely in the degree rather than the di-

codon usage table allows us to analytically calculate the relection of codon usage bias46]. If whole chromosomes

sulting period-three oscillations. However, genomes contaifi'® analyzed, one has to take into account that genes are

many exons, introns, and intergenic sequences. Moreovel cated on both strands. Therefore we use in our simulations

protein coding segments are found in all three reading framegIr dpseudochri)rrg)(l)some(see Sec. Ml also complementary
and on both DNA strands. Therefore, we are not surprised b§0 Aon cljJ_sage ad ?S.th di tion th i
the fact that the mutual information function plotted in Figs. S discussed In the preceding Section the nonunitorm

1-3 are decaying and thus deviate from a purely repeate%‘)don usage leads to specific statistical dependences within

high-low-low pattern exons. These are quantified below by the dependence matrix
Section 1V is devoted to the role of the length distribution DEXON () = peXOT k) — peXOnyexon 15

of exons, which indeed strongly affects the decay properties i U0 =Ry k) — PR (19

of correlation measures. Taking into account these length |n the following we denote the total fraction of protein

distributipns, we can generalize the pseudoexon model teoding sequences in a given DNA sequenceFbyFor the
stochastic models of genes and even of whole chromosom%ast chromosomes we have, for example;0.7[34]. The
termedpseudochromosomes task is now to estimate the correlation decay for a given
sequence lengtN, fraction of coding segments, and prob-
IV. LENGTH DISTRIBUTION OF EXONS ability distributionp(l).

The mean exon length is given by

We have discussed in the preceding section that the joint
probabilitiesp{® calculated within an exon reflect the non- = 1p00). (16)
uniform codon usage. Since long stretches of DNA include [
many different exons, only a fraction of paits andA; are o ]
located on the same exon. More precisely, an exon of lengtROr Yeast DNA, where genes exhibit only a few introns, the
| containg —k pairs contributing to the codon usage induced™ean exon length is about 1400 bp. The typical length scale
periodicity. Consequently, the length distributip@) of ex- of human exons is a few hundred base pairs. However, the_re
ons in a given DNA will be considered in this section. are also exons with a length of several thousand base pairs

We definep(]) as the probability distribution that an exon (€-g:, exon 11 of the BCRA1 gene comprises 3425 bp
has a length. In Sec. V we discuss, for instance, a fixed 1he €xpectation value of the number of exons in a
length| =L, exponential, and power-law distributiopgl). ~ Seguence of lengthl and an exon fractiof is
Figure 5 shows a histogram of the lengths of exons for yeast
chromosomes. It can be seen that there are rather long pro- — 2 17)
tein coding segments. Regression reveals that the empirical [
distribution can be approximated by an exponential decay
(full line) and by a power lawdashed lingas well. Hence, Consequently, the average number of exons with a lelnigth
we discuss both cases in some detail. given by
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B — FNp(l) 0.010
n(')-P(')n—m- (18

Since we focus in this paper on correlations due to the
nonuniform codon usage, we neglect statistical dependences
of pairsA; andA; which are not within the same exon. This
implies, for example, that the base composition in exons and
introns is considered to be the same. Generalizations of this
simplified approach are discussed in the final section.

Since every exon contributds-k pairs, we obtain the
numberZ(k) of pairs which are located in the same exon 0.002

mutual information [bit]

|ma><

Z(k= > (1—kn(l). (19 o e =
|=k+1

distance [bp]

Here, overlaps of protein coding segments have been ne- _ _
glected. The total number of pairs in a distarkces N—k FIG. 6. Mutual information of a 10bp long random sequence.

and hence, the overall deviatioBs; (k) from statistical in- Within a “random sea” of independent letters A C,G,and T, 1000
dependence are given by pseudoexons of a length 600 bp have been interspersed. For small

k, we observe the expected period-three oscillations between

Z(k) F2l;, andF?l,,, [see Eqgs(7) and (20)]. Please note that E¢24)
Djj(k)= ﬂDﬁ-xo”(k). (20)  predicts exactly the parabolic decay betwéen0 andk=600.
This result can now explain the decay of correlation func- p(D=0 . (22)

tions and the mutual information function, since both mea-_ = .

sures can be obtained from the decay of Ehgk) [cf. Egs. This yields

(3)=(7)]. It can be seen that beside the internal period-three

oscillations described bp{*(k) we obtain ak-dependent n=n(L)=
prefactor related vi&Z(k) to the exon length distribution.

Since we are primarily interested in the long-ranging corre-F k<L btai tially a i d f1h |
lations, we focus in the following on the envelope: or we obtain essentially a finear decay ot the envelope

E(K)

FN

N (23

-k
£10= 3 jen(l). @ JUPRALELLA 24

This formula is a central result of this paper. It elucidates thel_h K d d f the d inat b lected f
immediate effect of the length distribution of exons on the €k dependence ot the denominaltorf can be negiected for
N>L. The resulting linear decay dd;;(k) implies a qua-

decay properties of correlation measures, which we will ex-;~ . . :
emplify in Sec. V. dratic decay of the mutual information functipef. Eq. (7)].

Such a parabola is seen in Fig. 6 for a pseudogene with
constant exon length.
V.- MODELS OF LENGTH DISTRIBUTIONS Of course, it is more realistic to assume an exponentially

Now we illustrate the considerations of the preceding secdecaying length distributiotcompare Fig. 5 As above in
tion for three representative probability distributiopgl),  EQ. (24), we neglect thek dependence of the denominator.
namely, a uniform, an exponential, and a power-law distri-For the sake of simplicity, we further replace the summation
bution. in Eq. (21) by an integration fromk to infinity. Then an

We analytically derive the corresponding decay laws an@xponential length distribution
test the predictions usingseudogenegWe use this terminus
in analogy topseudoexonand pseudochromosomésr cor- p(H=N exp(—Al)
responding stochastic model sequences. It should not be con- .
fused with knocked out genes which are termed pseudg'ves an exponential decay of the envelope
genes as well. These consist of interspersed pseudoexons "
within a random seai.e., statistically independent letters E(k)ocF)\f (I-k)p(HdI=F exp(—\k). (26)
with the same base composition as the pseudoexons. The k
length of each exon is chosen randomly from the distribution . ) ) )
p(1) under consideration. In all simulations in this section weFigure 7 displays the results for a corresponding simulation
have chosen the codon usage table of the HUMBMYH7 genéf & pseudogene.
studied in Sec. 1. Details of the simulations are described in AS a last example we consider a power-law decay from a
the figure captions. lower cutoff lengthL ,;,, with an exponenjB>2

As a first model we discuss a fixed length of all protein -
coding segments=L, p(N=(B=DLH17# for I=Ly (27)

(29
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mutual information [bit]
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mutual information [bit]
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distance [bp]
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FIG. 7. Mutual information of a 10bp long sequence contain- 0.0000 5 1000 2000 3000

ing 1000 pseudoexons with exponentially distributed lengttsan distance [be]
value 600 bp. The logarithmic vertical scale reveals the predicted
exponential decay.

FIG. 9. Decay of the mutual information function for yeast chro-
mosomes(thin lines and the corresponding pseudochromosomes
thick lines. In order to reduce the strong fluctuatio@mpare

ig. 1) and to focus on the decay we have applied a 99 bp running
average. Upper graph: Chromosome lll. The codon usage table was
taken from the temperature-sensitive lethal TSM1 protdi221

B—1 bp). Lower graph: Chromosome Xl, table from the ORF which
I= B2 min- (28)  encodes dynei2 276 bp.

and zero otherwise. The mean value of the length is the
given by

amount of observed correlations can be predicted just by
knowing codon usage tables and the length distribution of
exons.

After integration we obtain a power-law decay of the enve-
lope fork>L,in

FLA™2
E(k)e

-1 K2=A. (29 VI. APPLICATIONS TO DNA SEQUENCES

In this section we apply our concept to representative

The log-log presentation of the mutual information in Fig. 8 DNA sequences. It was already demonstrated in Fig. 1 that
indicates indeed a power law for a simulation of a corre-the periodicity due to the nonuniform codon usage plays a
sponding pseudogene. S|gn_|f|cant role in yeast DNA. This is due to large fraction of
These examples show how the length distribution of ex£oding sequenced=(~0.7) and rather long exorigompare
ons affects the decay of correlations, which are due the norfig- 9- In order to quantify the effect of exons on correla-
uniform codon usage. In Sec. VI we show that our considertions we generatpseudochromosomes follows: codon us-

ations apply to DNA sequences and that a considerabl@d€ tables are taken from long yeast genes as a basis for the
simulation of pseudoexori{see Sec. Il In order to simulate

strand symmetry, 50% of the pseudoexons are generated
with the complementary codon usage table. The empirical
.| | histogram from the corresponding chromosome is taken as
length distribution for the interspersed pseudoexons. In be-
tween the pseudoexons Bernoulli sequences with the same
base composition are inserted. In this way a stochastic model
of a chromosome is defined which incorporates only well-
known features—the nonuniform codon usage and the alter-
nation of coding segments and intervening sequences.
Figure 9 reveals that the decay for the pseudochromo-
somes is quite similar to the actual decay for the yeast chro-
mosomes. Only for smak additional correlations can be
seen which are discussed in Sec. VII.
; ‘ Similar agreement was also found for codon usage tables
1 10 100 1000 . .
distance [bp] from other protein coding segments and for some strand
asymmetry.
FIG. 8. Mutual information of a X 10° bp long sequence with Significant long-range correlations in the yeast chromo-
7000 pseudoexons. The parameters of the exon length distributiggome 11l up to several kilo base pairs have been reported by
arel i,=150 andg= 1. Munson, Taylor, and Michaels48]. The existence of such

@

o,

mutual information [bit]
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FIG. 10. Mutual information decay for the. coli chromosome FIG. 11. Comparison of the smoothed mutual informatieg
region (thin line) and a corresponding pseudoregion with the $ameyp running averageof Brugia malayi myosin heavy chain gene
length distribution of(pseudo} exons. The codon usage table was (g g bp from the first to the last expand a corresponding ran-
taken from the isoleucil-tRNA ligas€ 811 bp. As in Fig. 9299 gom sequence with the same exon length distribution and codon
bp running average was applied. usage. Since the sample size decreases with the distance there is a

. o . clear increase of the bigsee also the Appendix
correlations is indeed corroborated by our mutual informa-

tion analysis. However, they exist also in a pseudochromo- . ) .
some(see Fig. 9, and hence, the length distribution of exons correlations and, therefore, most of the correlations in yeast
is sufficient to explain these correlations. DNA could be traced back to a simple origin. Our consider-

In the same way as for the yeast chromosome, we geneﬁt'ons_ apply to a_II_ parts of genomes where coding segments
ated a stochastic model of a DNA region®f coli (see Fig. ~ constitute a significant portion of the DNA such as bacteria
2). Figure 10 shows a comparison of the mutual informationO" retroviruses. This was exemplified for a DNA regiorgof

functions. coli and for a myosin heavy chain gene with a large fraction
Finally, we discuss the correlation decay in the myosinof €xons.
heavy chain gene M74000 &rugia malayi We have cho- Typically, in higher eukaryotes only a few percent of the

sen this gene since the 15 exons constitute about 68% of tHeNA are protein coding regions. Consequently, observed
total gene. Consequently, the correlations due to the exorl@ng-range correlation in DNA as the humgrglobin region
and their length distribution are more pronounced then id17] or in genes with very long intronfl6] cannot be ex-
genes with only a few percent of exor{n fact, the decay Plained simply by the nonuniform codon usage within exons.
for the human myosin heavy chain depicted in Fig. 3 is alsdoreover, the well-known compositional variations along
strongly influenced by correlations within its intronghe ~ chromosomes on scales above bp[28,34,35 are beyond
codon usage table and empirical length distribution of thehe scope of our analysis. _
analyzed gene are taken to generate a pseudogene as deOur concept is, however, more generally applicable. It
scribed in Sec. V. Since there are fairly long exons in thisc@n be formulated as followst) look for fragments of dif-
gene, Fig. 11 displays the expected long tail of the envelopd€ring statistical propertiedji) analyze its length distribu-
Quite similar correlations are found in the correspondingfion, (iii) define appropriatéstochastig pseudosequences,
pseudogenéthick line) pointing to the fact that most corre- and (iv) analyze their correlation decay, atg compare it -
lations are solely due to the length distribution of exons. ItWith the empirical mutual information. Related stochastic
turns out that for such relatively short DNA sequences dnodels of the DNA heterogeneity have a long tradition
careful calculation of the biagdashed line in Fig. 1lis  [27.32,36,38 but these models are based on hypothetical

necessary for a correct interpretation of the decay. length distributions of fragments. Contrarily, our approach
simply exploits the well-known length distribution of exons.

As a first step of a more general approach, Schmitt, Ebel-
ing, and Herze[49] recently studied length distributions of

Our paper was devoted to relating a significant part ofover-represented “words” termeniodules We suggest ana-
observed long-range correlations to the pattern of proteifyzing also length distributions of—for example—isochores
coding segments. We have shown that the triplet code int30], gene clusters, dispersed repeats, simple-sequence DNA,
duces via a nonuniform codon usage persistent oscillationar CpG islands. If one takes into account different composi-
of correlation measures. By taking into account the lengthions of exons and introns, the length distribution of introns
distributions of exons, a long-ranging decay of the mutualkcomes into play as well. We expect that stochastic models
information function and correlation functions could be pre-which include the actual length distributions of all these seg-
dicted. For example, a power-law distribution of the exonments can relate most observed long-range correlations to
length implies a power-law decay of correlation measures. known biological structures.

Pseudochromosomes based on the empirical length distri- Though we have quantitatively explained the origin of
bution in yeast chromosomes exhibit a quite similar decay ofong-range correlations in mostly protein coding sequences,

VIl. SUMMARY AND DISCUSSION
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4 -
0.0015 R R (K
=3 byt (AL)
=1 PiP;

where p;;(k) and p; denote the relative frequencies rather
than the(unknown probabilities p;; (k) and p; defined in
Sec. Il. Note that we have measured, so far, the mutual in-
formation in bits which corresponds to the logarithm of base
2 in Eqg. (1). In this Appendix we use the natural logarithm
for convenience.

As the estimate;;(k) and p; vary from sequence to
sequence, the values bfk) also fluctuate. Our task will be
to find approximate closed form expressions for the mean
0.0000 | 5 ™ “ and the variance of the distribution ¢fk) as well as to

distance [bp] derive its asymptotic form in the limit of large sequence

lengths.

0.0010 -

mutual information [bit]

0.0005 -

FIG. 12. Mutual information of yeast chromosomes (full
line), IX (dashed ling XI (dotted ling for short distances. In order 1. The mutual information bias

to eliminate the dominating period-three oscillations, we apply a . . .
running average over 3 bp. The comparison with a pseudochromo- Let us start with expressing the natural mutual informa-

some (thick line) reveals additional correlationén particular, a  tion function estimatot (k) in terms of the natural estimators
10-11 bp periog of the one-gram and two-gram Shannon entropies, which we

denote byH; andH,(k), respectively.

many questions remain open. For example, correlations 4 4

within introns and intergenic sequences were not the subject ](k): E b--(k)lnﬁ»-(k)—ZZ piInp, (A2)
of this paper. Moreover, we have seen in Fig. 9 additional if=1 . 3
correlations in yeast DNA for small distances, which cannot L

be explained by our pseudoexon concept. Figure 12 displays =2H;—Hy(k). (A3)

an example of such a peak structure with a periodicity of _ ~ ~

about 10 BP. These peaks may reflectpiteh of DNA, i.e., By expanding Ip;(k) and Irp; aboutp;;(k) andp;, we ob-

a 10.5 BP periodicity that has been found in curved DNAtaIn a power series expansion of the expectation value
[50,51 and DNA folded into nucleosomd$2]. Addition-  E(I(k)) in terms of moments of the multinomial distribution,
ally, the well-known three-four amino acid periodicities in all of which can be derived by elementary methods. Using
a-helical proteins[12,53-59 are a possible source of the the biases oH,; andH,(k) derived in[12,56,517, we obtain
observed peak structure.

In summary, we have shown in this paper that the Iength(i(k))Z2E(|:|1)—E(|:|2(k)) (A4)
distribution of exons in real DNA induces long-range corre-
lations which can be described by appropriate stochastic _ _ i B _ E 2
models. We stress, finally, that beyond these correlations =2{H; 2N Ha(k) 2N +O(IN%)
other DNA base pair fluctuations exist on various scales (A5)

[13,16-18,30,3b Their role for the chromosome organiza-

tion and gene expression has still to be explored. — 1K)+ %+O(1/N2). (A6)
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APPENDIX: ESTIMATION OF THE MUTUAL mators. According to EqtA2) and denoting the covariance
INFORMATION FROM FINITE SAMPLES between two random variables and b by cov(a,b), we

. . . . . obtain
In this Appendix, we derive analytic expressions for sta-

tistical and systematic errors that occur by estimating the 02(1)=402(Hy) + o3(H,) —4covHy Hy) (A7)
mutual information function (k) from finite sequences. The .
estimator we use throughout our paper is the so called natder the variance of the mutual information estimateThe
ral estimator (k) of the mutual information function, which first two terms in this equation are already giver{ 56,57,
is defined as who derive that

2. The mutual information variance
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4

. 1 Let us eventually derive an approximation for the corre-
02(H1)=N( 2, pilnp—Hi

+O(1/N?)  (A8) Ilation coefficientr betweenH; andH,, which is defined as
the normalized covariance

as well as

~ o~ cov(|:|1,|:Iz)
L[4 r(HlvHZ)Eﬁ (A16)
. o“(H1)o(Hy)
oZ(HZ)zﬁ(”Z:l pijInp;; —H3 | +O(1N?).  (A9) R
. cov(Inp;,Inp;;)
Therefore, we dedicate the following paragraph to deriving Jo2(npy) 2(Inp;,)
the covariance between the Shannon entropy estintates . (A17)
andH,, which appear to be not at all independent but highly
correlated as observed ja2]. =r(Inp;,Inp;;). (A18)

Following the lines in(58], we obtain This is a really noticeable result, since the right hand side of

this equality does not depend on the sample biz# states
that the correlation coefficient between the natural estimates
—E(H,—H)E(H,—H,) (A10)  Of the statisticsH; andH; is independent of the sequence
length and given by the correlation coefficient between the

COV(|:|1,|:|2):E((|:|1_H1)(|:|2_H2))

4 logarithm of the joint probabilitiep;; and the logarithm of
ocE( > (Inpij) (Pi; — Pij) their marginal probabilitiep;. SinceH; and H, of DNA
ihj=1 sequences are strongly correlated, we understand why the
4 mutual informationAquctuaEions are small compared to the
x> (|npk)(|5k_pk))_ (A11) fluctuations of bottH; andH; [22].
k=1 By combining Egqs(A7)—(A9) with Eq. (A15), we obtain
The symbole indicates thatO(1/N?) terms are neglected. A 1, 4
Further calculations yield o(h)e G ot(Inp) +5 o(Inp;j) —geov(Inp;, Inp;; )
. (A19)
CoOM(Hy,Hy) = .E, Inp;; INpKE((Pij — Pij) (Pxi— Pii)) 1,
hikI=1 =N (Inpj; —2Inp;) (A20)
4
A(1—D::
= Inpijlnpi%p”) (A12) o
=1 = g2 In(—J) . (A21)
N PiP;
4
_ E (1—-8,)(1— &) Note again that this equality relates teample variancef
ijkl=1 ' J the mutual information estimates to the variance of the 16
numbers If(p; /pip;)] as worked out in more detail if58].
Pij Pki
X Inp;;Inpy (A13)
N 3. The asymptotic mutual information distribution
14 _ Inthe following, we denote the statistical dependences by
=— 3 Inplnp;p;; Dj;=p;;— Pip; and expand the mutual informatidnin a
Nij=1 Taylor series abouD;;
1 4 4 E)
- Inp;: INpLp;: Al4 I= > Pyjin— (A22)
Ni,j,k,l=l np|] npkpljpk| ( ) i1 1] pipj
4 -
- D;:
1 A~ A ij
_ = D; +pipi)In| 1+ —
—Ncov(lnpi Jnpy)), (A15) izl (Dij+pip;) f’if’j)
(A23)
which relates the covariance of the natural Shannon entropy 4 - <
estimates to the covariance of the logarithms of the underly- _ 2 (5__ +piD)) ﬁ_ Djj
ing probabilities: the covariance between the observed two- S T 2p?p?
gram Shannon entropy and its marginal one-gram Shannon (A24)

entropy observed from the same sample of dizés, in a
first-order approximation, equal to the covariance between 4 R

the logarithms of the joint probabilitiep;; and the loga- => — o). (A25)
rithms of their marginal probabilitiep; divided by N. L1=12p;p;




The quantity
(A26)

is known asy? statistics which asymptotically approaches a
x?-probability distribution with nine degrees of freedom
[40]. For Bernoulli sequences with vanishibyg; , the result-

ing asymptotic probability density of the natural mutual in-

formation estimate$ reads

CORRELATIONS IN DNA SEQUENCES: THE ROLEP. ..
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N 9/2[ 712

—NI
r(on) ©

P(I)= (A27)

Otherwise, NI asymptotically approaches a noncentral
x2-probability distribution for nonvanishin;; [40,59.

These reviewed expressions for the bias, variance, and
asymptotic distribution provide a firm statistical basis for
applications of the mutual information function in sequence
analysis.
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